

Ensemble Forecasting Meeting ABRFC Experiences

OHD - April 21, 2004

ABRFC Background

• Why did ABRFC participate?

- Customer requirement limited for long range probabilistic information, but high for short range probabilistic information
- Major floods on mainstem Arkansas typically last 7 days
- Typical flooding is on the order of 1 to 3 days.
- ABRFC expects to use a total suite of probabilistic forecasts to satisfy customer demand.

ABRFC Experiences

- Began involvement in late 2002.
- First runs made in May, 2003.
- Selected 5 basins in Southwest Missouri.
- Wide selection of rainfall events; average annual rainfall equals 42 inches.
- Made first report on results to Probabilistic forecasting workshop held at Kansas City MO, Aug 2003.
- OHD provided several changes to software during the fall of 2003.

Project Area

Study Basins

Example 1 – Under forecasted likely due to hydrologic uncertainty (a)

Streamflow Forecast Legend

- 2% Exc. P
- 10% Exc. P
- * 25% Exc. P
- 50% Exc. P
- 75% Exc. P
- * 90% Exc. P
- X Deterministic

Exc. P: exceedance probability

- · - Observed

Example 1 – Under forecasted likely due to hydrologic uncertainty (b)

Streamflow Forecast Legend

- * 2% Exc. P
- 10% Exc. P
- 25% Exc. P
- 50% Exc. P
- 75% Exc. P
- * 90% Exc. P
- × Deterministic

Exc. P: exceedance probability

New look to forecast hydrograph

Forecast Legend 2% - 90% Exc. P

Streamflow

25% - 75% Exc. P

x Deterministic

Exc. P: exceedance probability

Example 2 – Another under forecast

Streamflow Forecast Legend

x Deterministic

Exc. P: exceedance probability

- · - Observed

Example 2 – Another under forecast (b)

Streamflow Forecast Legend 2% - 90% Exc. P

x Deterministic

Exc. P: exceedance probability

Calibration of Joint Distribution Parameters

For each time step, calibration on a 91-day window centered on the given day

Daily QPE/QPF high events present in the 3 years archive

=> calibration parameters appropriate for high event estimation

Joint Distribution: Parameter RHO

RHO: correlation parameter between forecast and observed values => measure of the forecast skill

RHO → 0: unskilled forecast => PQPF distribution close to smoothed climatology

RHO = 1: perfect forecast => PQPF distribution is the single value of bias-adjusted QPF

At 12CEN: lower RHO => more spread of PQPF

Verification of Short Term Forecasts

- Ran verification statistics for period of October 15th, 2003 until April 7, 2004 (175 days, or 48% of a year)
- Several large rainfall events included as well as sustained dry periods.
- Determined reliablity statistics for each ordinate of xsets forecast to see if it varied by time period.
- Had ESPADJQ technique turned on during entire period.
- Results varied from point to point, but showed we need additional work on algorithm as distinct biases were evident.
- Unsure of why distinct differences between forecast points.

All points 10/15/03-4/7/04 2 percent exceedance by Ordinate

All points 10/15/03-4/7/04 10 percent exceedance by Ordinate

All points 10/15/03-4/7/04 25 percent exceedance by Ordinate

All points 10/15/03-4/7/04 50 percent exceedance by Ordinate

All points 10/15/03-4/7/04 75 percent exceedance by Ordinate

All points 10/15/03-4/7/04 90 percent exceedance by Ordinate

Conclusions

- Hydrologic based uncertainty is not currently accounted for, and needs to be added.
- Algorithm needs to be refined as strong biases shown for all points verified.
- Patterns are evident in verification trends, but what do they mean??

Future work, other studies

- Continue to run short term probabalistic forecasts, adding any enhancements from OHD.
- Continue to document results.
- Participate in AHPS funded project to determine QPF reliability with HPC.
- Output from AHPS project may be 5, 25, 75 and 90% probability QPFs for all 5 basins in OHD test.
- Will produce 5 different forecasts with these QPFs and run verification.
- -Can compare reliablity charts of two methods.
- Easier to explain procedure to our customers.